首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-pressure 1H NMR study of pressure-induced structural changes in the heme environments of metcyanomyoglobins
Authors:Kitahara Ryo  Kato Minoru  Taniguchi Yoshihiro
Institution:Department of Applied Chemistry, College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
Abstract:The effect of pressure on the heme environment structure of sperm whale and horse heart metcyanomyoglobins was investigated up to 300 MPa by high-pressure (1)H NMR spectroscopy. Pressure-induced changes in the distances between the observed protons and the heme iron atom were estimated from changes in the dipolar shift due to the paramagnetic effect on the protons. The changes showed that the heme peripheral structure as a whole was compressed by pressure; the movements of the protons in the heme peripheral residues were in the range of +0.16 to -0.54 A/300 MPa. One-dimensional compressibilities for the protons, excluding the protons of the distal His residue, were in the range of 1.0 x 10(-4) to 6.1 x 10(-4)/MPa. The movements of the protons induced by pressure correlated well with the distance between the protons and cavities in the protein. The distal His residue (His 64) moved toward the outside of the heme pocket, but remained in the pocket even at 300 MPa. This movement was driven dominantly by a change in the dihedral angle around the C(alpha)-C(beta) rotational bond of the residue. Comparative work on horse heart metcyanomyoglobin implied that the conformational change of the His 64 imidazole ring was larger in the horse heart metcyanomyoglobin than in the sperm whale metcyanomyoglobin.
Keywords:NMR  pressure effect  myoglobin  paramagnetic shift  compressibility
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号