首页 | 本学科首页   官方微博 | 高级检索  
     


Splitting of the circadian rhythm of activity in hamsters: Effects of exposure to constant darkness and subsequent re-exposure to constant light
Authors:David J. Earnest  Fred W. Turek
Affiliation:(1) Department of Neurobiology and Physiology, Northwestern University, 60201 Evanston, Illinois, USA
Abstract:Summary The circadian rhythm of wheel running behavior was observed to dissociate into two distinct components (i.e. lsquosplitrsquo) within 30 to 110 days in 56% of male hamsters exposed to constant light (Figs. 1–2). Splitting was abolished in all 16 animals that were transferred from constant light (LL) to constant darkness (DD) within 1–4 days of DD, and the components of the re-fused activity rhythm assumed a phase relationship that is characteristic of hamsters maintained in DD (Figs. 3–5). Re-fusion of the split activity rhythm was accompanied by a change in period (tau); in 14 animals tau increased while in the other 2 animals tau decreased after transfer to DD.After 10–30 days in DD, the hamsters were transferred back into LL at various time points throughout the circadian cycle. A few of these animals went through two or three LL to DD to LL transitions. The effect of re-exposure to LL was dependent on the phase relationship between the transition into LL and the activity rhythm. A rapid (i.e. 1–4 days) induction of splitting was observed in 7 of 9 cases when hamsters were transferred into LL 4–5 h after the onset of activity (Fig. 5). In the other 2 animals, the activity pattern was ultradian or aperiodic for 20 to 50 days before eventually coalescing into a split activity pattern. In contrast, transfer of animals (n = 13) from DD to LL at other circadian times did not result in the rapid induction of splitting and the activity rhythm continued to free-run with a single bout of activity (Fig. 5). Importantly, a transfer from DD to LL 4–5 h after the onset of activity did not induce splitting if the hamsters had not shown a split activity rhythm during a previous exposure to LL (n=10; Fig. 6).These studies indicate that transfer of split hamsters from LL to DD results in the rapid re-establishment of the normal phase relationship between the two circadian oscillators which underlie the two components of activity during splitting. In addition, there appears to be a history-dependent effect of splitting which renders the circadian system susceptible to becoming split again. The rapid re-initiation of the split condition upon transfer from DD to LL at only a specific circadian time is discussed in terms of the phase response curve for this species.Abbreviation PRC phase response curveThis investigation was supported by NIH grants HD-09885 and HD-12622 from the National Institute of Child Health and Human Development and by a grant from the Whitehall FoundationRecipient of Research Career Development Award K04 HD-00249 from the National Institute of Child Health and Human Development
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号