首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pro-angiogenic induction of myeloid cells for therapeutic angiogenesis can induce mitogen-activated protein kinase p38-dependent foam cell formation
Authors:Rohde Eva  Schallmoser Katharina  Reinisch Andreas  Hofmann Nicole A  Pfeifer Thomas  Fröhlich Eleonore  Rechberger Gerald  Lanzer Gerhard  Kratky Dagmar  Strunk Dirk
Institution:Stem Cell Research Unit, University of Graz, Graz, Austria.
Abstract:Background aimsClinical trials for therapeutic angiogenesis use blood- or bone marrow-derived hematopoietic cells, endothelial progenitor cells (EPC) and mesenchymal stromal cells (MSC) for vascular regeneration. Recently concerns have emerged that all three cell types could also contribute to atherosclerosis by foam cell formation. Therefore, we asked whether human myelomonocytic cells, EPC or MSC can accumulate lipid droplets (LD) and develop into foam cells.MethodsLD accumulation was quantified by flow cytometry, confocal microscopy and cholesterol measurement in each of the cell types. The impact of an initial pro-angiogenic induction on subsequent foam cell formation was studied to mimic relevant settings already used in clinical trials. The phosphorylation state of intracellular signaling molecules in response to the pro-angiogenic stimulation was determined to delineate the operative mechanisms and establish a basis for interventional strategies.ResultsFoam cells were formed by monocytes but not by EPC or MSC after pro-angiogenic induction. Mitogen-activated protein kinase (MAPK) p38 phosphorylation was enhanced and kinase inhibition almost abrogated intracellular LD accumulation in monocytes.ConclusionsThese data suggest that hematopoietic cell preparations containing monocytes bear the risk of foam cell formation after pro-angiogenic induction. Instead, EPC and MSC may drive vascular regeneration without atherogenesis aggravation. A thorough understanding of cell biology is necessary to develop new strategies combining pro-angiogenic and anti-atherogenic effects during cell therapy.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号