首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Catalytic residues of the telomere resolvase ResT: a pattern similar to, but distinct from, tyrosine recombinases and type IB topoisomerases
Authors:Deneke Jan  Burgin Alex B  Wilson Sandra L  Chaconas George
Institution:Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
Abstract:ResT is a member of the telomere resolvases, a newly discovered class of DNA breakage and reunion enzymes. These enzymes are involved in the formation of co-valently closed hairpin DNA ends that are found in linear prokaryotic chromosomes and plasmids. The hairpins are generated by telomere resolution, where the replicated linear DNA ends are processed by DNA breakage followed by joining of DNA free ends to the complementary strand of the same molecule. Previous studies have shown that ResT catalyzes hairpin formation through a two-step transesterification similar to tyrosine recombinases and type IB topoisomerases. In the present study we have probed the reaction mechanism of ResT. The enzyme was found to efficiently utilize a substrate with a 5'-bridging phosphorothiolate at each cleavage site, similar to tyrosine recombinases/type IB topoisomerases. Using such a substrate to trap the covalent protein-DNA intermediate, coupled with affinity purification and mass spectroscopy, we report a new, non-radioactive approach to directly determine the position of the amino acid in the protein, which is linked to the DNA. We report that tyrosine 335 is the active site nucleophile in ResT, strengthening the link between ResT and tyrosine recombinases/type IB topoisomerases. However, a distinct pattern of catalytic residues with similarities, but distinct differences from the above enzymes was suggested. The differences include the apparent absence of a general acid catalyst, as well as the dispensability of the final histidine in the RKHRHY hexad. Finally, two signature motifs (GRR(2X)E(6X)F and LGH(4-6X)T(3X)Y) near the catalytic residues of aligned telomere resolvases are noted.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号