首页 | 本学科首页   官方微博 | 高级检索  
     


Stereochemistry of a diastereoisomeric amphiphile and the species of the lipase influence enzyme activity in the transesterification catalyzed by a lipase-co-lyophilizate with the amphiphile in organic media
Authors:Yurie Mine  Kimitoshi Fukunaga  Makoto Yoshimoto  Katsumi Nakao  Yoshiaki Sugimura
Affiliation:(1) Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, 755-8611, Japan;(2) General Education Division, Oshima National College of Maritime Technology, Komatsu, Oshima-cho, Yamaguchi, 742-2193, Japan
Abstract:Modified Candida rugosa and Pseudomonas cepacia lipase (CRL and PCL) were co-lyophilized with two pairs of synthetic diastereoisomeric amphiphiles, d- and l-2-(2,3,4,5,6-pentahydroxy-hexanoylamino)-propyl]-carbamoyl-propionylamino)-pentanedioic acid didodecyl ester (d- and l-BIG2C12CA); d- and l-2-(2,3,4,5,6-pentahydroxy-hexanoylamino)-pentanedioic acid didodecyl ester (d- and l-2C12GE). Enzyme activities of the modified lipase in the transesterification in organic solvent were evaluated. Both pairs of the diastereoisomeric amphiphiles showed enhanced enzyme activity in the transacetylation between racemic sulcatol and isopropenyl acetate in diisopropyl ether, catalyzed by the PCL-co-lyophilizate, by 19–48 fold when compared to the native lipase lyophilized from buffer alone independent of the stereochemistry of the amphiphiles, while in the case of the CRL-co-lyophilizate only the l-BIG2C12CA showed enhanced enzyme activity in the transbutyrylation between racemic solketal and vinyl butyrate in cyclohexane as high as 68–78 fold.
Keywords:amphiphile  Candida rugosa lipase  modified lipase  non-aqueous enzymology  Pseudomonas cepacia lipase
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号