首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation and induction of glycine N-methyltransferase by retinoids are tissue- and gender-specific
Authors:McMullen Mary H  Rowling Matthew J  Ozias Marlies K  Schalinske Kevin L
Institution:Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois 61801, USA.
Abstract:Betaine-homocysteine S-methyltransferase (BHMT; EC2.1.1.5) is a zinc metalloenzyme that catalyzes the transfer of a methyl group from betaine to homocysteine to produce dimethylglycine and Met, respectively. This enzyme is a member of a family of zinc-dependent methyltransferases that use thiols or selenols as methyl acceptors and which contain the following motif: GILV]NCX(20, 100)ALV]X(2)ILV]GGCCX(3)PX(2)I. We recently reported that the three cysteine residues within this motif function as ligands to zinc in BHMT because changing any of them to alanine abolished zinc-binding and enzyme activity (A. P. Breksa, III, and T. A. Garrow, 1999, Biochemistry 38, 13991-13998). To determine if other amino acid residues in this motif were critical for enzyme function, the two regions defined by the motif in human BHMT, GVNCH(218) and VRYIGGCCGFEPYHI(307), were subjected to semirandom and random site-directed mutagenesis. Mutant enzymes were classified as either active or inactive based on their ability to complement the Met auxotrophy of Escherichia coli strain J5-3. The Gly residue at position 214 was found to be absolutely essential for complementation. The positions occupied by Gly297, Gly298, and Gly301 favored substitutions of small amino acids like Ala and Ser. We hypothesize that these Gly residues provide the necessary flexibility to the Zn-binding region to permit coordination of the metal.
Keywords:S-adenosylmethionine  Transmethylation  Methyl groups  Vitamin A  Retinoic acid  Glycine N-methyltransferase  Liver  Pancreas  Kidney  Rats
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号