Temporal Profiles of Proteins Responsive to Transient Ischemia |
| |
Authors: | Gerald A. Dienel Nancy F. Cruz Stephen J. Rosenfeld |
| |
Affiliation: | Department of Neurology, Cornell University Medical College, New York, New York, U.S.A. |
| |
Abstract: | The responses of long and short half-lived proteins to ischemia were measured in rat brain during 6 days of recovery from 30 min of transient forebrain ischemia produced by four-vessel occlusion. At the end of the ischemic interval, the neocortical activities of four vulnerable enzymes [ornithine (ODC) and S-adenosylmethionine (SAMDC) decarboxylases, and RNA polymerases I and II] were unchanged, but within 30 min of reperfusion, their activities dropped by 25-50%. The loss of substance P in the striatum and substantia nigra was slower, reaching about 50% by 12 h. On the other hand, the activities of 5 long half-lived enzymes did not change in the neocortex at 5 and 15 h of reperfusion and regional protein concentrations were essentially unaffected over 6 days survival. The rate and extent of normalization of the amounts or activities of the vulnerable proteins varied. RNA polymerase II and ODC activities were restored within 4 h, and ODC showed a biphasic increase in activity, with peaks at 10 h and 2-3 days. RNA polymerase I and SAMDC activities were restored by 18 h and 5 days, respectively, whereas substance P concentrations did not completely recover, even at 6-15 days. The greater the regional reduction of blood flow during ischemia, the larger the net change (gain or loss) of SAMDC or ODC activity and the longer the time required to normalize the activities of these enzymes. The average rate of proteolysis, assessed by measuring the rate of clearance of 14C from protein prelabeled with [14C]bicarbonate, was abnormal during the first 2 days of reperfusion. Postischemic changes in both protein synthesis and degradation could affect the amounts of some of the proteins responsive to transient ischemia. |
| |
Keywords: | Brain ischemia Vulnerable proteins Brain regions Proteolysis |
|
|