首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A mesoscopic stochastic mechanism of cytosolic calcium oscillations
Authors:Zhu Chun-Lian  Jia Ya  Liu Quan  Yang Li-Jian  Zhan Xuan
Institution:Department of Physics, Jianghan University, Wuhan 430056, China.
Abstract:Based on a model of intracellular calcium (Ca(2+)) oscillation with self-modulation of inositol 1,4,5-trisphosphate signal, the mesoscopic stochastic differential equations for the intracellular Ca(2+) oscillations are theoretically derived by using the chemical Langevin equation method. The effects of the finite biochemical reaction molecule number on both simple and complex cytosolic Ca(2+) oscillations are numerically studied. In the case of simple intracellular Ca(2+) oscillation, it is found that, with the increase of molecule number, the coherence resonance or autonomous resonance phenomena can occur for some external stimulation parameter values. In the cases of complex cytosolic Ca(2+) oscillations, each extremum of concentration of cytosolic Ca(2+) oscillations corresponds to a peak in the histogram of Ca(2+) concentration, and the most probability appeared during the bursting plateau level for bursting, but at the largest minimum of Ca(2+) concentration for chaos. For quasi-periodicity, however, there are only two peaks in the histogram of Ca(2+) concentration, and the most probability is located at low concentration state.
Keywords:Intracellular calcium oscillations  Chemical Langevin equation  Finite molecule number
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号