首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enzymatic Regeneration of NAD in Enantioselective Oxidation of Secondary Alcohols: Glutamate Dehydrogenase Versus NADH Dehydrogenase
Abstract:To improve yield and productivity of ketose in NAD-dependent polyol oxidations, two enzymatic methods for regeneration of the oxidized coenzyme form have been compared and partly optimized for the batch conversion of xylitol into D-xylulose and D-sorbitol into D-fructose. Polyol oxidation was catalyzed by xylitol dehydrogenase from the yeast Galactocandida mastotermitis. Reduction of OM2 (apparently to H2O) by partially purified NADH dehydrogenase complex from Corynebacterium callunae could drive alcohol oxidations better than reductive amination of EaL-ketoglutarate by glutamate dehydrogenase. A fed-batch procedure was developed that overcame inhibition of glutamate dehydrogenase by α-ketoglutarate (Kis 25 mM), thus increasing the productivity of ketose almost 2-fold. For D-fructose production from D-sorbitol (0.1-0.3M) yields of < 90% and productivities up to 1.30g/(L.h) have been obtained. High conversion of up to 50g/L xylitol into D-xylulose for which xylitol dehydrogenase exhibits an about 80-fold higher specificity constant than for D-fructose required complexation of the ketose product with borate. In comparison with reductive amination by glutamate dehydrogenase, advantages of using NADH-dehydrogenase catalyzed regeneration of NAD for ketose production are (i) avoidance of byproduct formation, (ii) cheaper substrate (02 versus α-ketoglutarate), and (iii) easier process control (batch versus fed-batch).
Keywords:NAD-regeneration  Glutamate dehydrogenase  NADH dehydrogenase  Polyol oxidation  Ketose production
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号