首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Oxygen-Derived Free Radicals and Oxidants on the Degradation in vitro of Membrane Phospholipids
Abstract:The abilities of chemically generated hydroxyl radical (OH), superoxide anion (O?) and hydrogen peroxide (H2O2) to degrade rat myocardial membrane phospholipids previously lableed with [1 -14C]arachidonic acid were studied. HO and H2O2 but not O2??, caused the degradation of phospha-tidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). With OH' and H2O2, the loss of radiolable in PC was accompanied by an increase in the radiolabel of lysophosphatidylcholine (LPC), but not in that of free fatty acid (FFA). These results suggest the hydrolysis of l-oxygen ester bond of PC by HO' and that H2O2 and that HO' and H2O2, but not O?, are detrimental to the structure and function of membrane phospholipids. However, since μM amounts of HO' and mM amounts of H2O2 were necessary to affect the membrane phospholipids, it is likely that in the reprefused myocardium only HO', but not H2O2, may directly cause the breakdown of membrane phospholipids.
Keywords:Free radicals  Phospholipids  Membranes  Myocardium  arachidonic acid  reperfusion injury
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号