首页 | 本学科首页   官方微博 | 高级检索  
     


Attenuation of oxidative hemolysis of human red blood cells by the natural phenolic compound,allylpyrocatechol
Abstract:Abstract

The protecting ability of the Piper betle leaves-derived phenol, allylpyrocatechol (APC) against AAPH-induced membrane damage of human red blood cells (RBCs) was investigated. Compared to control, AAPH (50 mM) treatment resulted in significant hemolysis (55%, p < 0.01), associated with increased malondialdehyde (MDA) (2.9-fold, p < 0.001) and methemoglobin (6.1-fold, p < 0.001) levels. The structural deformation due to membrane damage was confirmed from scanning electron microscopy (SEM) images and Heinz bodies formation, while the cell permeability was evident from the K+ efflux (28.7%, p < 0.05) and increased intracellular Na+ concentration (8%, p < 0.05). The membrane damage, due to the reduction of the cholesterol/phospholipids ratio and depletion (p < 0.001) of ATP, 2,3-DPG by ?44–54% and Na+–K+ ATPase activity (43.7%), indicated loss of RBC functionality. The adverse effects of AAPH on all these biochemical parameters and the resultant oxidative hemolysis of RBCs were significantly reduced by pretreating the cells with APC (7 μM) or α-tocopherol (50 μM) for 1 h, prior to incubation with AAPH.
Keywords:hemolysis  ion homeostasis  energy profile  membrane damage  red blood cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号