首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modeling and optimization of lipase-catalyzed esterification of policosanols with conjugated linoleic acid by response surface methodology
Abstract:Abstract

The aim of this study was to model the lipase-catalyzed esterification of policosanols with conjugated linoleic acid (CLA) in a solvent-free system to produce wax esters which had a lower melting point than that of their corresponding policosanol forms and to optimize the reaction conditions by response surface methodology (RSM). Novozym 435 was selected as a suitable biocatalyst for the reaction. The molar ratio of substrates (policosanols to CLA) was 1:2. A well-fitting quadratic polynomial regression model for the degree of esterification (DE) of policosanols with CLA was established with regard to temperature (35–65°C), enzyme loading (1–5% of weight of total substrates), and reaction time (10–50 min). Optimal reaction conditions were 61.3°C for temperature, 3.7% for enzyme loading, and 34.1 min for reaction time, and the DE was ? 95 mol% under these conditions. The policosanols and wax esters synthesized under optimal conditions had melting points of 79°C and 57°C, respectively.
Keywords:Conjugated linoleic acid  Novozym 435  policosanols  response surface methodology  wax ester
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号