首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of physical and covalent immobilization of lipase from Candida antarctica on polyamine microspheres of alkylamine matrix
Abstract:Abstract

Polyamine microspheres (PA-M) prepared using polyethyleneimine as matrix were used for the immobilization of Candida antarctica lipase. The isoelectric point of PA-M is 10.6, and the hydrophobicity of PA-M was indicated using naphthalene. Optimization of conditions showed that the maximal loading of lipase on PA-M reached 230.2 mg g? 1 at pH 9.0 and 35°C. An increased buffer concentration had no effect on the activity of lipase but decreased the amount of lipase adsorbed. Simulation with Langmuir and Freundlich isotherms demonstrated that the adsorption of lipase on PA-M was thermodynamically favorable. Covalent crosslinking of the lipase adsorbed extended the pH range and increased the optimal temperature of the lipase activity. The physically adsorbed lipase (P-lipase) and the covalently immobilized derivative (C-lipase) retained more than 75% and 85% of their initial activity, respectively, after 10 cycles of usage. The half-lives of P-lipase and C-lipase at 50°C were 15.70 and 27.67 times higher than that of the free enzyme, respectively. Compared to P-lipase, covalent immobilization obviously reduced the catalytic efficiency and activation energy of the enzyme.
Keywords:Covalent immobilization  electrostatic attraction  hydrophobicity  lipase  polyamine microspheres  physical adsorption
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号