首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reactions of Adriamycin with Microsomal Iron and Lipids
Abstract:Iron plays a central role in oxidative injury, reportedly because it catalyzes superoxide- and hydrogen peroxide-dependent reactions yielding a powerful oxidant such as the hydroxyl radical. Iron is also thought to mediate the cardiotoxic and antitumour effects of adriamycin and related compounds. NADPH-supplemented microsomes reduce adriamycin to a semiquinone radical, which in turn re-oxidizes in the presence of oxygen to form superoxide and hence hydrogen peroxide. During this redox cycling membrane-bound nonheme iron undergoes superoxide dismutase- and catalase-insensitive reductive release. Membrane iron mobilization triggers lipid peroxidation, which is markedly enhanced by simultaneous addition of superoxide dismutase and catalase. The results indicate that : i) lipid peroxidation is mediated by the release of iron, yet the two reactions are governed by different mechanisms; and ii) oxygen radicals are not involved in or may actually inhibit adriamycin-induced lipid peroxidation. Microsomal iron delocalization and lipid peroxidation might represent oxyradical-independent mechanisms of adriamycin toxicity.
Keywords:Microsomes  ferric nonheme iron  adriamycin semiquinone  ferric reduction  ferrous release
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号