首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glucocorticoids inhibit estradiol-mediated uterine growth: possible role of the uterine estradiol receptor
Authors:D S Rabin  E O Johnson  D D Brandon  C Liapi  G P Chrousos
Institution:Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20892.
Abstract:Stress-related activation of the hypothalamic-pituitary-adrenal axis (HPA) is associated with suppression of the reproductive axis. This effect has been explained by findings indicating that corticotropin-releasing hormone suppresses hypothalamic gonadotropin-releasing hormone (GnRH) secretion via an opioid peptide-mediated mechanism, and that glucocorticoids suppress both GnRH and gonadotropin secretion and inhibit testosterone and estradiol production by the testis and ovary, respectively. To evaluate whether glucocorticoids suppress the effects of estradiol on its target tissues, we examined the ability of dexamethasone to inhibit estradiol-stimulated uterine and thymic growth in ovariectomized rats. Estradiol alone, given daily for 5 days, caused dose-dependent uterine and thymic growth. Dexamethasone alone, given daily for 5 days, caused a dose-dependent decrease in body weight gain and in thymic growth. When estradiol and dexamethasone were administered simultaneously, however, body weight gain and thymic growth were also inhibited (p less than 0.05). Dexamethasone decreased estradiol-induced uterine cytosolic and nuclear estrogen receptor concentrations (E2 R0, p less than 0.05; E2nR0, respectively), but had no effect on estradiol-induced progesterone receptor concentrations (P4R0, p greater than 0.05). Levels of uterine glucocorticoid receptors were not affected by estrogen and/or dexamethasone treatment. These findings suggest that stress levels of glucocorticoids, administered over a 5-day interval, block the estradiol-stimulated growth of female sex hormone target tissues. This effect may be partially mediated by a glucocorticoid-induced decrease of the estradiol receptor concentration. Thus, another mechanism by which the HPA may influence reproductive function during stress is by a direct effect of glucocorticoids on the target tissues of sex steroids.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号