首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Positioning and the specific sequence of each 13-mer motif are critical for activity of the plasmid RK2 replication origin
Authors:Kowalczyk Lukasz  Rajewska Magdalena  Konieczny Igor
Institution:Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland.
Abstract:The minimal replication origin of the broad-host-range plasmid RK2, oriV, contains five iterons which are binding sites for the plasmid-encoded replication initiation protein TrfA, four DnaA boxes, which bind the host DnaA protein, and an AT-rich region containing four 13-mer sequences. In this study, 26 mutants with altered sequence and/or spacing of 13-mer motifs have been constructed and analysed for replication activity in vivo and in vitro. The data show that the replacement of oriV 13-mers by similar but not identical 13-mer sequences from Escherichia coli oriC inactivates the origin. In addition, interchanging the positions of the oriV 13-mers results in greatly reduced activity. Mutants with T/A substitutions are also inactive. Furthermore, introduction of single-nucleotide substitutions demonstrates very restricted sequence requirements depending on the 13-mer position. Only two of the mutants are host specific, functional in Pseudomonas aeruginosa but not in E. coli. Our experiments demonstrate considerable complexity in the plasmid AT-rich region architecture required for functionality. It is evident that low internal stability of this region is not the only feature contributing to origin activity. Our studies suggest a requirement for sequence-specific protein interactions within the 13-mers during assembly of replication complexes at the plasmid origin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号