Degradation of Alyssum murale biomass in soil |
| |
Authors: | Zhang Lan Angle J Scott Delorme Thierry Chaney Rufus L |
| |
Affiliation: | Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA. |
| |
Abstract: | The Ni-hyperaccumulating plant Alyssum murale accumulates exceptionally high concentrations of nickel in its aboveground biomass. The reasons for hyperaccumulation remain unproven; however, it has been proposed that elemental alelopathy might be important. High-Ni leaves shed by the plant may create a "toxic zone" around the plant where germination or growth of competing plants is inhibited. The efficacy of this argument will partially depend upon the rate at which leaves degrade in soil and free metals are released, and the subsequent rate at which metals are bound to soil constituents. To test the degradation of biomass of hyperaccumulators, A. murale was grown on both high- and low-Ni soils to achieve high- (12.0 g Ni/kg) and low- (0.445 g Ni/kg) Ni biomass. Shredded leaf and stem biomass were added to a serpentine soil from Oregon that was originally used to grow high-Ni biomass and a low-Ni control soil from Maryland. Biomass Ni was readily soluble and extractable, suggesting near immediate release as biomass was added to soil Extractable nickel in soil amended with biomass declined rapidly over time due to Ni binding in soil These results suggest that Ni released from biomass of Ni hyperaccumulators may significantly affect their immediate niche only for short periods of time soon after leaf fall, but repeated application may create high Ni levels under and around hyperaccumulators. |
| |
Keywords: | hyperaccumulator biomass extractable nickel elemental allelopathy Alyssum murale |
本文献已被 PubMed 等数据库收录! |
|