首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive significance of avian beak morphology for ectoparasite control
Authors:Clayton Dale H  Moyer Brett R  Bush Sarah E  Jones Tony G  Gardiner David W  Rhodes Barry B  Goller Franz
Affiliation:Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA. clayton@biology.utah.edu
Abstract:The beaks of Darwin's finches and other birds are among the best known examples of adaptive evolution. Beak morphology is usually interpreted in relation to its critical role in feeding. However, the beak also plays an important role in preening, which is the first line of defence against harmful ectoparasites such as feather lice, fleas, bugs, flies, ticks and feather mites. Here, we show a feature of the beak specifically adapted for ectoparasite control. Experimental trimming of the tiny (1-2 mm) maxillary overhang of rock pigeons (Columba livia) had no effect on feeding efficiency, yet triggered a dramatic increase in feather lice and the feather damage they cause. The overhang functions by generating a shearing force against the tip of the lower mandible, which moves forward remarkably quickly during preening, at up to 31 timesper second. This force damages parasite exoskeletons, significantly enhancing the efficiency of preening for parasite control. Overhangs longer than the natural mean of 1.6mm break significantly more often than short overhangs. Hence, stabilizing selection will favour overhangs of intermediate length. The adaptive radiation of beak morphology should be re-assessed with both feeding and preening in mind.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号