首页 | 本学科首页   官方微博 | 高级检索  
     


Oxygen-conserving effects of apnea in exercising men.
Authors:P Lindholm  P Sundblad  D Linnarsson
Affiliation:Section of Environmental Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden. peter.lindholm@fyfa.ki.se
Abstract:We sought to determine whether apnea-induced cardiovascular responses resulted in a biologically significant temporary O(2) conservation during exercise. Nine healthy men performing steady-state leg exercise carried out repeated apnea (A) and rebreathing (R) maneuvers starting with residual volume +3.5 liters of air. Heart rate (HR), mean arterial pressure (MAP), and arterial O(2) saturation (Sa(O(2)); pulse oximetry) were recorded continuously. Responses (DeltaHR, DeltaMAP) were determined as differences between HR and MAP at baseline before the maneuver and the average of values recorded between 25 and 30 s into each maneuver. The rate of O(2) desaturation (DeltaSa(O(2))/Deltat) was determined during the same time interval. During apnea, DeltaSaO(2)/Deltat had a significant negative correlation to the amplitudes of DeltaHR and DeltaMAP (r(2) = 0.88, P < 0.001); i.e., individuals with the most prominent cardiovascular responses had the slowest DeltaSa(O(2))/Deltat. DeltaHR and DeltaMAP were much larger during A (-44 +/- 8 beats/min, +49 +/- 4 mmHg, respectively) than during R maneuver (+3 +/- 3 beats/min, +30 +/- 5 mmHg, respectively). DeltaSa(O(2))/Deltat during A and R maneuvers was -1.1 +/- 0.1 and -2.2 +/- 0.2% units/s, respectively, and nadir Sa(O(2)) values were 58 +/- 4 and 42 +/- 3% units, respectively. We conclude that bradycardia and hypertension during apnea are associated with a significant temporary O(2) conservation and that respiratory arrest, rather than the associated hypoxia, is essential for these responses.
Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号