首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanistic insight from thermal activation parameters for oxygenation reactions of different substrates with biomimetic iron porphyrin models for compounds I and II
Authors:Christoph Fertinger  Alicja Franke  Rudi van Eldik
Institution:(1) Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany;
Abstract:Compound I, an oxo–iron(IV) porphyrin π-cation radical species, and its one-electron-reduced form compound II are regarded as key intermediates in reactions catalyzed by cytochrome P450. Although both reactive intermediates can be easily produced from model systems such as iron(III) meso-tetra(2,4,6-trimethylphenyl)porphyrin hydroxide by selecting appropriate reaction conditions, there are only a few thermal activation parameters reported for the reactions of compound I analogues, whereas such parameters for the reactions of compound II analogues have not been investigated so far. Our study demonstrates that ΔH and ΔS are closely related to the chemical nature of the substrate and the reactive intermediate (viz., compounds I and II) in epoxidation and C–H abstraction reactions. Although most studied reactions appear to be enthalpy-controlled (i.e., ΔH  > −TΔS ), different results were found for C–H abstractions catalyzed by compound I. Whereas the reaction with 9,10-dihydroanthracene as a substrate is also dominated by the activation enthalpy (ΔH  = 42 kJ/mol, ΔS  = 41 J/Kmol), the same reaction with xanthene shows a large contribution from the activation entropy (ΔH  = 24 kJ/mol, ΔS  = −100 J/kmol). This is of special interest since the activation barrier for entropy-controlled reactions shows a significant dependence on temperature, which can have an important impact on the relative reaction rates. As a consequence, a close correlation between bond strength and reaction rate—as commonly assumed for C–H abstraction reactions—no longer exists. In this way, this study can contribute to a proper evaluation of experimental and computational data, and to a deeper understanding of mechanistic aspects that account for differences in the reactivity of compounds I and II.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号