首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical study on electronic structures of FeOO, FeOOH, FeO(H2O), and FeO in hemes: as intermediate models of dioxygen reduction in cytochrome c oxidase
Authors:Yoshioka Yasunori  Satoh Hiroyuki  Mitani Masaki
Affiliation:Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan. yyoshi@chem.mie-u.ac.jp
Abstract:The electronic structures of heme-dioxygen complexes have been studied as intermediate models of dioxygen reduction mechanism catalyzed by the mixed valence (MV) and fully reduced (FR) cytochrome c oxidase (CcO). Dioxygen, protons and electrons were sequentially added to the heme along the proposed reaction path for the O(2) reduction mechanism. The electronic structures of [FeOO], [FeOO](-), [FeOOH](+), [FeOOH], [Fe=O, H(2)O](+), [Fe=O](+) and [Fe=O] were thoroughly investigated by using the unrestricted hybrid exchange-correlation functional B3LYP method. The additions of two protons and an electron to [FeOO] lead to the OO bond cleavage to produce a H(2)O molecule with the electron transfer from Fe(II) in heme to the OO moiety. It is shown that the intrinsic OO bond cleavage occurs by adding two protons and two electrons into the OO bond, indicating consistency with a H(2)O formation catalyzed by both MV and FR CcO. The study of the electronic structures of heme-dioxygen complexes gave the different proposals for the mechanisms of a H(2)O formation by both MV and FR CcO. For the mixed valence CcO, starting from the [FeOO] complex, the final products are single H(2)O molecule and compound I of the oxo heme. For the fully reduced CcO, the final products are single H(2)O molecule and compound II of the oxo heme which is a reduced state of the compound I.
Keywords:Cytochrome c oxidase   Heme   Density functional theory   Dioxygen reduction   Reaction mechanism
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号