首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells
Authors:Fujimoto Minoru  Nakano Mayumi  Terabe Fumitaka  Kawahata Hirohisa  Ohkawara Tomoharu  Han Yongmei  Ripley Barry  Serada Satoshi  Nishikawa Teppei  Kimura Akihiro  Nomura Shintaro  Kishimoto Tadamitsu  Naka Tetsuji
Institution:Laboratory for Immune Signal, National Institute of Biomedical Innovation, Ibaraki City, Osaka 567-0085, Japan.
Abstract:IL-6 is a proinflammatory cytokine and its overproduction is implicated in a variety of inflammatory disorders. Recent in vitro analyses suggest that IL-6 is a key cytokine that determines the balance between Foxp3(+) regulatory T cells (Tregs) and Th17 cells. However, it remains unclear whether excessive IL-6 production in vivo alters the development and function of Foxp3(+) Tregs. In this study, we analyzed IL-6 transgenic (Tg) mice in which serum IL-6 levels are constitutively elevated. Interestingly, in IL-6 Tg mice, whereas peripheral lymphoid organs were enlarged, and T cells exhibited activated phenotype, Tregs were not reduced but rather increased compared with wild-type mice. In addition, Tregs from Tg mice normally suppressed proliferation of naive T cells in vitro. Furthermore, Tregs cotransferred with naive CD4 T cells into SCID-IL-6 Tg mice inhibited colitis as successfully as those transferred into control SCID mice. These results indicate that overproduction of IL-6 does not inhibit development or function of Foxp3(+) Tregs in vivo. However, when naive CD4 T cells alone were transferred, Foxp3(+) Tregs retrieved from SCID-IL-6 Tg mice were reduced compared with SCID mice. Moreover, the Helios(-) subpopulation of Foxp3(+) Tregs, recently defined as extrathymic Tregs, was significantly reduced in IL-6 Tg mice compared with wild-type mice. Collectively, these results suggest that IL-6 overproduced in vivo inhibits inducible Treg generation from naive T cells, but does not affect the development and function of natural Tregs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号