首页 | 本学科首页   官方微博 | 高级检索  
     


Polypeptide folding and dimerization in bacterial luciferase occur by a concerted mechanism in vivo
Authors:J J Waddle  T C Johnston  T O Baldwin
Affiliation:Department of Biochemistry and Biophysics, Texas A&M University, College Station.
Abstract:Bacterial luciferase is a heterodimeric enzyme comprising two nonidentical but homologous subunits, alpha and beta, encoded by adjacent genes, luxA and luxB. The two genes from Vibrio harveyi were separated and expressed from separate plasmids in Escherichia coli. If both plasmids were present within the same E. coli cell, the level of accumulation of active dimeric luciferase was not dramatically less than within cells containing the intact luxAB sequences. Cells carrying the individual plasmids accumulated large amounts of individual subunits, as evidenced by two-dimensional polyacrylamide gel electrophoresis. Mixing of a lysate of cells carrying the luxA gene with a lysate of cells carrying the luxB gene resulted in formation of very low levels of active heterodimeric luciferase. However, denaturation of the mixed lysates with urea followed by renaturation resulted in formation of large amounts of active luciferase. These observations demonstrate that the two subunits, alpha and beta, if allowed to fold independently in vivo, fold into structures that do not interact to form active heterodimeric luciferase. The encounter complex formed between the two subunits must be an intermediate structure on the pathway to formation of active heterodimeric luciferase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号