首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Specificity of ligand binding to yeast hexokinase PII studied by STD-NMR
Authors:Astrid Blume  Michael Fitzen  Andrew J Benie  Thomas Peters  
Institution:aInstitute of Chemistry, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany
Abstract:Hexokinase catalyzes the phosphorylation of glucose and is the first enzyme in glycolysis. To investigate enzyme–ligand interactions in yeast hexokinase isoform PII under physiological conditions, we utilized the technique of Saturation Transfer Difference NMR (STD NMR) to monitor binding modes and binding affinities of different ligands at atomic resolution. These experiments clearly show that hexokinase tolerates several changes at C-2 of its main substrate glucose, whereas epimerization of C-4 significantly reduces ligand binding. Although both glucose anomers bind to yeast hexokinase, the α-form is the preferred form for the phosphorylation reaction. These findings allow mapping of tolerated and prohibited modification sites on the ligand. Furthermore, competitive titration experiments show that mannose has the highest binding affinity of all examined sugars. As several naturally occurring sugars in cells show binding affinities in a similar range, hexokinase may be considered as an ‘emergency enzyme’ in yeast cells. Taken together, our results represent a comprehensive analysis of ligand–enzyme interactions in hexokinase PII and provide a valuable basis for inhibitor design and metabolic engineering.
Keywords:Ligand binding  STD NMR  Yeast hexokinase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号