首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional reconstruction of thin filaments decorated with a Ca2+-regulated myosin
Authors:Peter Vibert  Roger Craig
Affiliation:Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, Mass. 02254, U.S.A.
Abstract:Three-dimensional reconstructions of “barbed” and “blunted” arrowheads (Craig et al., 1980) show that these two forms arise from arrangement of scallop myosin subfragments (S1) that appear about 40 Å longer in the presence of the regulatory light chain than in its absence. A similar difference in apparent length is indicated by images of single myosin subfragments in partially decorated filaments. The extra mass is located at the end of the subfragment furthest from actin, and probably comprises part of the regulatory light chain as well as a segment of the myosin heavy chain. The fact that barbed arrowheads are also formed by myosin subfragments from vertebrate striated and smooth muscles implies that the homologous light chains in these myosins have locations similar to that of the scallop light chain.The scallop light chain probably does not extend into the actin-binding site on the myosin head, and is therefore unlikely to interfere physically with binding. Rather, regulation of actin-myosin interaction by light chains may involve Ca2+-dependent changes in the structure of a region near the head-tail junction of myosin.The reconstructions suggest locations for actin and tropomyosin relative to myosin that are similar to those proposed by Taylor & Amos (1981) and are consistent with a revised steric blocking model for regulation by tropomyosin. The identification of actin from these reconstructions is supported by images of partially decorated filaments that display the polarity of the actin helix relative to that of bound myosin subfragments.
Keywords:S1  myosin subfragment-1  HMM  heavy meromyosin  DTNB light chain  light chain released by 5,5′-dithiobis(2-nitrobenzoic acid)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号