Fructose-1,6-bisphosphate as a metabolic substrate in hog ileum smooth muscle during hypoxial |
| |
Authors: | Timothy M. Juergens Christopher D. Hardin |
| |
Affiliation: | (1) Department of Physiology, University of Missouri, 65212 Columbia, MO, USA |
| |
Abstract: | Exogenously applied fructose-1,6-bisphosphate has been reported to be effective in preventing some damage to the small intestine during ischemia. To determine whether exogenously applied fructose-1,6-bisphosphate protects ileum smooth muscle from damage from hypoxia and from reoxygenation, we examined the effect of fructose-1,6-bisphosphate on the ability of hog ileum smooth muscle to maintain isometric force during hypoxia and to generate isometric force after reoxygenation in the presence of 5 mM glucose. After 180 min of hypoxia, tissues incubated with 20 mM fructose-1,6-bisphosphate maintained significantly greater levels of isometric force than tissues incubated in the absence of exogenous substrate (23% of pre-hypoxia force compared to 16%). During the first contraction following reoxygenation there was a significantly greater force generation in tissues incubated with 20 mM fructose-1,6-bisphosphate during the hypoxia period compared to tissues with no exogenous substrate included during the hypoxia period (29% of pre-hypoxia force compared to 19%). However, glucose always was a better metabolic substrate compared to fructose-1,6-bisphosphate under all experimental conditions. The presence of fructose-1,6-bisphosphate during hypoxia likely improved tissue function by fructose-1,6-bisphosphate entering the cells and acting as a glycolytic intermediate, since during a 120 min period of hypoxia, unmounted ileum smooth muscle metabolized 1,6-13C-fructose-1,6-bisphosphate to 3-13C-lactate. This conversion of 1,6-13C-fructose-1,6-bisphosphate to 3-13C-lactate was inhibited by the addition of 1 mM iodoacetic acid, a glycolytic inhibitor. We conclude that exogenously provided fructose-1,6-bisphosphate does provide modest protection of ileum smooth muscle from hypoxic damage by functioning as a glycolytic intermediate and improving the cellular energy state.This work was supported in part by NIH (HL48783 to CDH), NSF (Instrumentation Grant 8908304), and the Department of Physiology of the University of Missouri. T. Juergens was supported by the School of Medicine and the Department of Physiology of the University of Missouri. |
| |
Keywords: | glycolysis 13C-NMR ischemia hypoxia smooth muscle contraction |
本文献已被 SpringerLink 等数据库收录! |
|