首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of (H+ + K+)-ATPase by omeprazole in isolated gastric vesicles requires proton transport
Authors:P Lorentzon  R Jackson  B Wallmark  G Sachs
Abstract:Omeprazole was found to inhibit the (H+ + K+)-ATPase activity in isolated gastric vesicles only when acid was accumulated in the vesicle lumen. The ATPase activity was time- and dose-dependently inhibited in the presence of K+ and valinomycin. Under conditions in which no pH-gradient was generated, i.e., in the presence of K+ alone or NH4+, no effect of omeprazole was found. The degree of inhibition was directly correlated to the amount of inhibitor bound to the preparation. A stoichiometry of 2 mol radiolabelled inhibitor bound per mol phosphoenzyme was found on total inhibition of the K+ plus valinomycin-stimulated activity. This inhibitory action of omeprazole on the ATPase activity could be fully reversed by addition of beta-mercaptoethanol. The inhibition of the proton transport in the (H+ + K+)-ATPase-containing vesicles by omeprazole was also strictly correlated to the amount of bound inhibitor. The stoichiometry of binding at total inhibition of this reaction was found to be 1.4 mol per mol phosphoenzyme. The K+-stimulated p-nitrophenylphosphatase activity was inhibited in parallel with the ATPase activity, whereas the phosphoenzyme levels were affected to a lesser extent by omeprazole. Gel electrophoresis of an omeprazole-inhibited vesicle preparation showed that the radiolabel was mainly found at 94 kDa, the molecular weight of the (H+ + K+)-ATPase catalytic subunit(s).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号