首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oxygen release from low and normal P50 Hb vesicles in transiently occluded arterioles of the hamster window model
Authors:Sakai Hiromi  Cabrales Pedro  Tsai Amy G  Tsuchida Eishun  Intaglietta Marcos
Institution:Advanced Research Institute for Science and Engineering, Waseda Univ., Tokyo 169-8555, Japan.
Abstract:A phospholipid vesicle encapsulating Hb Hb vesicle (HbV)] has been developed as a transfusion alternative. One characteristic of HbV is that the O(2) affinity Po(2) at which Hb is 50% saturated (P(50))] of Hb can be easily regulated by the amount of the coencapsulated allosteric effector pyridoxal 5'-phosphate. In this study, we prepared two HbVs with different P(50)s (8 and 29 mmHg, termed HbV(8) and HbV(29), respectively) and observed their O(2)-releasing behavior from an occluded arteriole in a hamster skinfold window model. Conscious hamsters received HbV(8) or HbV(29) at a dose rate of 7 ml/kg. In the microscopic view, an arteriole (diameter: 53.0 +/- 6.6 mum) was occluded transcutaneously by a glass pipette on a manipulator, and the reduction of the intra-arteriolar Po(2) 100 mum down from the occlusion was measured by the phosphorescence quenching of preinfused Pd-porphyrin. The baseline arteriolar Po(2) (50-52 mmHg) decreased to about 5 mmHg for all the groups. Occlusion after HbV(8) infusion showed a slightly slower rate of Po(2) reduction compared with that after HbV(29) infusion. The arteriolar O(2) content was calculated at each reducing Po(2) in combination with the O(2) equilibrium curves of HbVs, and it was clarified that HbV(8) showed a significantly slower rate of O(2) release compared with HbV(29) and was a primary source of O(2) (maximum fraction, 0.55) overwhelming red blood cells when the Po(2) was reduced (e.g., <10 mmHg) despite a small dosage of HbV. This result supports the possible utilization of Hb-based O(2) carriers with lower P(50) for oxygenation of ischemic tissues.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号