首页 | 本学科首页   官方微博 | 高级检索  
   检索      


E.coli PhoE porin has an opposite voltage-dependence to the homologous OmpF.
Authors:H Samartzidou and  A H Delcour
Institution:Department of Biology, University of Houston, Houston, TX 77204-5513, USA.
Abstract:We used patch clamp analysis to compare the electrophysiological behavior of two related porins from Escherichia coli, the anion-specific PhoE and the cation-selective OmpF. Outer membrane fractions were obtained from strains expressing just one of these porin types, and the channels were reconstituted into liposomes without prior purification. We show that the orientation of the reconstituted channels is not random and is the same for both PhoE and OmpF. Like cation-selective porins, PhoE shows fast and slow gating to closed levels of various amplitudes, testifying that the channels visit multiple functional states and behave as cooperative entities. The voltage-dependence of PhoE closure is asymmetric, but strikingly, occurs at voltages of inverse polarity from those promoting closures of OmpC and OmpF. Both slow kinetics and inverse voltage-dependence are removed when 70 amino acids from the N-terminal of OmpF are introduced into the homologous region of PhoE. This novel observation regarding the voltage-dependence of the two channel types, along with published results on PhoE and OmpF mutants, allows us to propose a molecular mechanism for voltage sensing and sensor charge movements in bacterial porins. It also offers new cues on the possible physiological relevance in bacteria of this common form of channel modulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号