首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enzyme inactivation and stabilization studies in an ultrafiltration reactor
Authors:Guido Greco Jr  Donatella Albanesi  Maria Cantarella  Liliana Gianfreda  Rosaria Palescandolo  Vincenzo Scardi
Institution:(1) Present address: Istituto di Principi di Ingegneria Chimica, Università di Napoli, Italy;(2) Cattedra di Chimica delle Fermentazioni e Batteriologia Industriale, Università di Napoli, Italy
Abstract:Summary An ultrafiltration membrane enzymatic reactor is used in connection with different reacting systems.The experimental conditions are such that the enzyme, which operates at fairly high concentration levels because of the concentration polarization phenomena taking place in the reactor, is still in soluble form.The analysis of the system unsteady-state response enables the identification of the mechanism of enzyme deactivation and the extraction of the kinetic parameters of both the deactivation and the main reaction.The stabilizing effect observed in connection with enzyme entrapment within an inert gel deposited onto the U.F. membrane active surface is also discussed.List of Symbols A U.F. membrane cross sectional area cm2 - CE Enzyme concentration mg/ml - CEI Enzyme concentration at the active membrane surface mg/ml - CE Mean enzyme concentration mg/ml - c s o Substrate concentration in the feed m moles/ml - c s u Substrate concentration in the outlet m moles/ml - DE Enzyme diffusivity cm2/s - Km michaelis constant mM - k2 Kinetic constant of the enzymatic reaction m moles/mg s - kd Kinetic constant of the enzyme deactivation reaction s–1 - No Initial amount of active enzyme mg - N(t) Active enzyme amount at reaction time t mg - Q Flow rate ml/s - r Rate of the main reaction m moles/ml s - t Reaction time s - t* Reaction time at which product concentration in the outlet is within ± 2% of the steady-state value s - v Fluid velocity cm/s - V Cell volume ml - VB Volume within which 99% of the enzyme fed is contained at the steady-state ml - VS Volume within which 99% of the total substrate concentration drop occurs at the steady-state ml - x Distance upstream the membrane measured from the membrane surface cm
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号