首页 | 本学科首页   官方微博 | 高级检索  
     


Mobilization of Nitrogen in Fruiting Plants of a Cultivar of Cowpea
Authors:PEOPLES, MARK B.   PATE, JOHN S.   ATKINS, CRAIG A.
Abstract:Patterns of flow of nitrogen were constructed for the post-anthesisdevelopment of symbiotically-dependent cowpea (Vigna unguiculataWalp. cv. Vita 3-Rhizobium CB756). Nitrogen fixed after floweringcontributed 40% of the fruits' total intake of N, mobilizationof N fixed before flowering the remaining 60%. Leaflets, nodulatedroot, stem plus petioles, and peduncles contributed mobilizedN in the approximate proportions 5: 2: 1: 1 respectively. Eachfruit drew on all available current sources of N, but N fromleaves was distributed preferentially to closest fruit(s), andlower fruits monopolized the N exported from nodulated rootsduring late fruiting. Rates of nitrogen fixation declined parallel with decreasingnet photosynthesis of shoots. Leaflets at upper reproductivenodes mobilized 70–77% of their N and declined steeplyin net photosynthesis rate per unit chlorophyll or per unitribulose-l, 5-bisphosphate carboxylase (RuBPCase)2 before abscisingduring mid- to late fruiting, whereas leaflets at lower vegetativenodes (1–3) mostly failed to abscise, lost 44–57%of their N and maintained photosynthetic activity throughoutfruiting. Peptide hydrolase activity was examined in extracts of leaflets,roots and nodules, by autodigestion of extracts, or in assaysusing bovine haemoglobin and purified RuBPCase isolated fromcowpea as substrates. Hydrolase activities during fruiting werebroadly related to N loss from plant organs, but asynchronyin peaks of activity against different protein substrates indicateddistinct groups of hydrolases within single organs. Hydrolaseactivity of leaflet extracts against RuBPCase was highly andpositively correlated with in vivo rates of loss of RuBPCasefrom the same leaflets, and preferential degradation of thisprotein occurred during leaflet senescence. Key words: Nitrogen, Mobilization: Cowpea
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号