首页 | 本学科首页   官方微博 | 高级检索  
     


Gold nanoparticles decorated with oligo(ethylene glycol) thiols: kinetics of colloid aggregation driven by depletion forces
Authors:Fajun Zhang  Donald G. Dressen  Maximilian W. A. Skoda  Robert M. J. Jacobs  Stefan Zorn  Richard A. Martin  Christopher M. Martin  Graham F. Clark  Frank Schreiber
Affiliation:1.Institut für Angewandte Physik,Universit?t Tübingen,Tübingen,Germany;2.Department of Physics and Astronomy,University of Denver,Denver,USA;3.Physical and Theoretical Chemistry Laboratory,University of Oxford,Oxford,UK;4.Chemistry Research Laboratory,University of Oxford,Oxford,UK;5.School of Physical Sciences, Ingram Building,University of Kent,Caterbury,UK;6.SRS,Cheshire,UK
Abstract:We have studied the kinetics of the phase-separation process of mixtures of colloid and protein in solutions by real-time UV-vis spectroscopy. Complementary small-angle X-ray scattering (SAXS) was employed to determine the structures involved. The colloids used are gold nanoparticles functionalized with protein resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11)(OCH(2)CH(2))(6)OMe (EG6OMe). After mixing with protein solution above a critical concentration, c*, SAXS measurements show that a scattering maximum appears after a short induction time at q = 0.0322 A(-1), which increases its intensity with time but the peak position does not change with time, protein concentration and salt addition. The peak corresponds to the distance of the nearest neighbor in the aggregates. The upturn of scattering intensities in the low q-range developed with time indicating the formation of aggregates. No Bragg peaks corresponding to the formation of colloidal crystallites could be observed before the clusters dropped out from the solution. The growth kinetics of aggregates is followed in detail by real-time UV-vis spectroscopy, using the flocculation parameter defined as the integral of the absorption in the range of 600-800 nm wavelengths. At low salt addition (<0.5 M), a kinetic crossover from reaction-limited cluster aggregation (RLCA) to diffusion-limited cluster aggregation (DLCA) growth model is observed, and interpreted as being due to the effective repulsive interaction barrier between colloids within the depletion potential. Above 0.5 M NaCl, the surface charge of proteins is screened significantly, and the repulsive potential barrier disappeared, thus the growth kinetics can be described by a DLCA model only.
Keywords:Gold nanoparticle  Self-assembled monolayer  Protein resistance  SAXS  UV–  vis spectroscopy
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号