首页 | 本学科首页   官方微博 | 高级检索  
     


Genes and sites involved in replication and incompatibility of an R100 plasmid derivative based on nucleotide sequence analysis
Authors:Jonathan Rosen   Thomas Ryder   Hachiro Inokuchi   Hisako Ohtsubo  Eiichi Ohtsubo
Affiliation:(1) Department of Microbiology, Health Sciences Center, State University of New York at Stony Brook, 11794 Stony Brook, New York, USA;(2) Department of Biophysics, Faculty of Science, University of Kyoto, Kyoto, Japan
Abstract:Summary The nucleotide sequence of the entire region required for autonomous replication and incompatibility of an R100 plasmid derivative, pSM1, has been determined. This region includes the replication region and all plasmid encoded information required for replication. Numerous reading frames for possible proteins can be found in this region. The existence of one of these proteins called RepA1 (285 amino acids; 33,000 daltons) which is encoded within the region known by cloning analysis to be required for replication is supported by several lines of evidence. These include an examination of the characteristic sequences on the proximal and distal ends of the coding region, a comparison of the sequence of the replication regions of pSM1 and the highly related R1 plasmid derivative Rsc13 as well as other biochemical and genetic evidence. The existence of two other proteins, RepA3 (64 amino acids; 7000 daltons) and RepA2 (103 amino acids; 11,400 daltons) is also consistent with most of the criteria mentioned above. However, the region encoding RepA3, which by cloning analysis is within the region responsible for both replication and incompatibility, has never been demonstrated to produce a 7,000 dalton polypeptide. Since a large secondary structure can be constructed in this region, it is possible that the region contains structure or other information that is responsible for incompatibility. RepA2, encoded entirely within the region identified by cloning analysis to be responsible for incompatibility but not for replication can be visualized in vivo and in vitro. However, the nucleotide sequence of the region encoding RepA2 is completely different in mutually incompatible plasmid derivatives of R1 and R100. It is therefore unlikely that RepA2 plays a major role in incompatibility. Thus, we predict that RepA1 is required to initiate DNA synthesis at the replication origin and that the region proximal to RepA1 either encodes a gene product or structure information that is responsible for incompatibility.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号