首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions
Authors:S Eskelinen
Abstract:Human erythrocytes were incubated in haemolytic salt or sucrose media and the amount of potassium and haemoglobin released were monitored. In hypotonic NaCl and KCl solutions potassium release and haemolysis increased with time showing that the cell membrane had been injured and became permeable to intra- and extracellular cations which, due to intracellular haemoglobin, causes water influx and continuous haemolysis. Both potassium release and haemolysis remained, however, at their 2-minute level in the presence of LPC. Thus, LPC could reseal the membrane and prevent continuous salt fluxes. It protected erythrocytes from hypotonic haemolysis and the protection was more efficient in NaCl than in sucrose media. This suggests that the increase in the critical volume of erythrocytes caused by LPC occurs both in electrolyte and sucrose media, and the additional protection observed in electrolyte media is due to the resealing of the injured cell membrane by LPC. The repairing mechanism was mediated via the membrane lipids or integral proteins, since the time-course of haemolysis of erythrocytes swollen in NaCl media at the spectrin-denaturing temperature of 49.5 degrees C was similar to that at room temperature with and without LPC. LPC did not protect erythrocytes from colloid osmotic haemolysis caused by ammonia influx in an isotonic NH4Cl medium, but protected the cells from colloid osmotic haemolysis caused by sodium influx through nystatin-channels in NaCl media without any area or volume increase. Hence, LPC could not prevent ammonia influx through the lipid bilayer, but suppressed sodium influx through nystatin-channels presumably via LPC interference with cholesterol.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号