首页 | 本学科首页   官方微博 | 高级检索  
     


Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor
Authors:Liu Yen-Chin  Liu Yi-Liang  Su Jia-Yang  Liu Guang-Yaw  Hung Hui-Chih
Affiliation:Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan.
Abstract:Both ornithine decarboxylase (ODC) and its regulatory protein, antizyme inhibitor (AZI), can bind with antizyme (AZ), but the latter has a higher AZ-binding affinity. The results of this study clearly identify the critical amino acid residues governing the difference in AZ-binding affinities between human ODC and AZI. Inhibition experiments using a series of ODC mutants suggested that residues 125 and 140 may be the key residues responsible for the differential AZ-binding affinities. The ODC_N125K/M140K double mutant demonstrated a significant inhibition by AZ, and the IC(50) value of this mutant was 0.08 μM, three-fold smaller than that of ODC_WT. Furthermore, the activity of the AZ-inhibited ODC_N125K/M140K enzyme was hardly rescued by AZI. The dissociation constant (K(d)) of the [ODC_N125K/M140K]-AZ heterodimer was approximately 0.02 μM, which is smaller than that of WT_ODC by approximately 10-fold and is very close to the K(d) value of AZI_WT, suggesting that ODC_N125K/M140K has an AZ-binding affinity higher than that of ODC_WT and similar to that of AZI. The efficiency of the AZI_K125N/K140M double mutant in the rescue of AZ-inhibited ODC enzyme activity was less than that of AZI_WT. The K(d) value of [AZI_K125N/K140M]-AZ was 0.18 μM, nine-fold larger than that of AZI_WT and close to the K(d) value of ODC_WT, suggesting that AZI_K125N/K140M has an AZ-binding affinity lower than that of AZI_WT and similar to that of ODC. These data support the hypothesis that the differences in residues 125 and 140 in ODC and AZI are responsible for the differential AZ-binding affinities.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号