首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production.
Authors:M Dols  W Chraibi  M Remaud-Simeon  N D Lindley  and P F Monsan
Abstract:The metabolic and energetic properties of Leuconostoc mesenteroides have been examined with the goal of better understanding the parameters which affect dextransucrase activity and hence allowing the development of strategies for improved dextransucrase production. Glucose and fructose support equivalent specific growth rates (0.6 h-1) under aerobic conditions, but glucose leads to a better biomass yield in anaerobiosis. Both sugars are phosphorylated by specific hexokinases and catabolized through the heterofermentative phosphoketolase pathway. During sucrose-grown cultures, a large fraction of sucrose is converted outside the cell by dextransucrase into dextran and fructose and does not support growth. The other fraction enters the cell, where it is phosphorylated by an inducible sucrose phosphorylase and converted to glucose-6-phosphate (G-6-P) by a constitutive phosphoglucomutase and to heterofermentative products (lactate, acetate, and ethanol). Sucrose supports a higher growth rate (0.98 h-1) than the monosaccharides. When fructose is not consumed simultaneously with G-1-P, the biomass yield relative to ATP is high (16.8 mol of ATP.mol of sucrose-1), and dextransucrase production is directly proportional to growth. However, when the fructose moiety is used, a sink of energy is observed, and dextransucrase production is no longer correlated with growth. As a consequence, fructose catabolism must be avoided to improve the amount of dextransucrase synthesized.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号