首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural analysis of muscle thin filament
Institution:1. Lahey Hospital and Medical Center, Burlington, MA;2. University of California San Diego School of Medicine, San Diego, CA
Abstract:Thin sheets of Ac-Tm-Tn paracrystals were prepared in the presence of high concentration of Ca2+ ion and three-dimensional image analysis was performed. The optical diffraction pattern of an electron micrograph showed spots up to 1/1.6 nm−1 in the radial direction and up to 1/2.5 nm−1 in the axial direction, the best resolution ever obtained so far. The translationally filtered image showed clear polarity of filament which looked like a “spearhead” per each crossover repeat of actin helix.The three-dimensionally reconstructed model looked very similar to the inner regions (A+B domains) of the Ac-Tm-S1 complex obtained by Toyoshima and Wakabayashi (14, 15) when they were placed so that the “spearhead” pattern of the Tc-Tm-Tn complex and the “arrowhead” pattern of the Ac-Tm-S1 complex pointed in the same direction. The myosin-binding site of actin was identified by comparison of two structures.The model of actin molecule cut out from the thin filament model had a low density region within itself, which was located about 2.5 nm from the helix axis. That low density region divided actin molecule into two domains, a large and a small domain. A dense “pillar” was detected which connected two neighboring actin molecules along a left-handed generic helix 1 nm from the helix axis. Two actin-actin binding sites which were responsible for the connection through the “pillar” were located on the inner surface of actin molecule.To obtain better crystalline arrays of actin, we tried a method utilizing adsorption to lipid. A positively-charged monolayer of lipids was formed on the surface of a small volume of buffer solution which was put in a microwell. Solution of negatively-charged F-actin was then injected into the buffer solution and was allowed to be joined to the lipid monolayer by electrostatic attraction. Fluidity of the lipid monolayer enabled the two-dimensional crystallization of actin. Electron microscopy revealed that larger paracrystalline arrays were formed more rapidly (< 1 hr) than those formed within solution, which demonstrated the advantage of this adsorption method.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号