首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Aquaporins in complex tissues: distribution of aquaporins 1-5 in human and rat eye
Authors:Hamann  Steffen; Zeuthen  Thomas; Cour  Morten La; Nagelhus  Erlend A; Ottersen  Ole Petter; Agre  Peter; Nielsen  Soren
Abstract:Multiple physiological fluid movements areinvolved in vision. Here we define the cellular and subcellular sitesof aquaporin (AQP) water transport proteins in human and rat eyes byimmunoblotting, high-resolution immunocytochemistry, and immunoelectronmicroscopy. AQP3 is abundant in bulbar conjunctival epithelium andglands but is only weakly present in corneal epithelium. In contrast, AQP5 is prominent in corneal epithelium and apical membranes of lacrimal acini. AQP1 is heavily expressed in scleral fibroblasts, corneal endothelium and keratocytes, and endothelium covering thetrabecular meshwork and Schlemm's canal. Although AQP1 is plentiful inciliary nonpigmented epithelium, it is not present in ciliary pigmentedepithelium. Posterior and anterior epithelium of the iris and anteriorlens epithelium also contain significant amounts of AQP1, but AQP0(major intrinsic protein of the lens) is expressed in lens fiber cells.Retinal Müller cells and astrocytes exhibit notableconcentrations of AQP4, whereas neurons and retinal pigment epitheliumdo not display aquaporin immunolabeling. These studies demonstrateselective expression of AQP1, AQP3, AQP4, and AQP5 in distinct ocularepithelia, predicting specific roles for each in the complex networkthrough which water movements occur in the eye.

Keywords:
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号