首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbon Metabolism in Seagrasses: II. PATTERNS OF PHOTOS YNTHETIC CO2 INCORPORATION
Authors:BEER  SVEN; SHOMER-ILAN  ADIVA; WAISEL  YOAV
Abstract:Patterns of initial photosynthetic CO2 incorporation were determinedfor some seagrasses and were related to activities of primarycarbon fixing enzymes, carbonic anhydrase activities, and {delta}13Cvalues. According to the incorporation patterns, Cymodocea nodosa wasa C4 species while Thalassia hemprichli and Thalassodendronciliatum were C3 plants. Halophila stipulacea showed an unusualincorporation pattern which could be viewed as intermediatebetween typical C3 and C4 pathways. The activity ratios of ribulose-l,5-bisphosphate carboxylase (RUBPcase) to phosphoenolpyruvatecarboxylase (PEPcase) were about 3 for Thalassodendron ciliatumand 1 for Cymodocea nodosa and Halophila stipulacea. The lattervalue, which is intermediate to ratios found in terrestrialC3 and C4 plants, may correlate with the incorporation patternsfound for Halophila stipulacea. Since the C4 seagrass lackedthe Kranz anatomy, it may, in addition, point to a flexibleincorporation potential for these plants. The high {delta}13C values found in these and other seagrasses didnot correlate with their photosynthetic pathways as in terrestrialplants. This discrepancy is probably due to a ‘closedsystem’ type of photosynthesis in which CO2 is efficientlyutilized. The C3 species which utilize CO2 enzymatically must convertexogenous HCO-3 to CO2 internally. Even though carbonic anhydraseactivities were very low, conversion rates seemed to be sufficientfor high rates of photosynthesis. Since enzymatic fixation ratesapproached photosynthetic rates even at CO2 saturation, thelimitation for these seagrasses to express their high photosyntheticpotential is most probably the HCO3 uptake system.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号