首页 | 本学科首页   官方微博 | 高级检索  
     


Intestinal lysine metabolism is driven by the enteral availability of dietary lysine in piglets fed a bolus meal
Authors:Bos Cécile  Stoll Barbara  Fouillet Hélène  Gaudichon Claire  Guan Xinfu  Grusak Michael A  Reeds Peter J  Tomé Daniel  Burrin Douglas G
Affiliation:Department of Nutrition Physiology and Feeding Control, National Institute for Agricultural Research, Unité Mixte de Recherche, Paris, France. bos@inapg.inra.fr
Abstract:Previous steady-state continuous-feeding studies have shown that the gut mucosa removes substantial amounts of both dietary and systemic amino acids. However, enteral nutrition is often given under non-steady-state conditions as a bolus meal, and this has been shown to influence systemic metabolism. Therefore, our aim was to quantify the relative metabolism of dietary and systemic lysine by the portal-drained viscera (PDV) under non-steady-state conditions after a single bolus meal. Five 28-day-old piglets implanted with arterial, venous, and portal catheters and with an ultrasonic portal flow probe were given an oral bolus feeding of a milk formula containing a trace quantity of intrinsically 15N-labeled soy protein and a continuous intravenous infusion of [U-13C]lysine for 8 h. Total lysine use by the PDV was maximal 1 h after the meal (891 micromol x kg(-1) x h(-1)) and was predominantly of dietary origin (89%), paralleling the enteral delivery of dietary lysine. Intestinal lysine use returned to a low level after 4 h postprandially and was derived exclusively from the arterial supply until 8 h. Cumulative systemic appearance of dietary lysine reached 44 and 80% of the ingested amount 4 and 8 h after the meal, respectively, whereas the PDV first-pass use of dietary lysine was 55 and 32% of the intake for these two periods, respectively. We conclude that the first-pass utilization rate of dietary lysine by the PDV is directly increased by the enteral lysine availability and that it is higher with a bolus than with continuous oral feeding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号