首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The jasmonate pathway is involved differentially in the regulation of different defence responses in tobacco cells
Authors:M Rickauer  W Brodschelm  A Bottin  C Véronési  H Grimal  M T Esquerré-Tugayé
Institution:Centre de Physiologie Végétale, UMR UPS-CNRS 5546, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex, France, FR
Lehrstuhl für Pharmazeutische Biologie, Universit?t München, Karlstrasse 29, D-80333 München, Germany, DE
Abstract:Jasmonic acid, a product of the lipoxygenase (LOX) pathway, has been proposed to be a signal transducer of defence reactions in plants. We have reported previously that methyl jasmonate (MJ) induced accumulation of proteinase inhibitors in tobacco cell suspensions (Rickauer et al., 1992, Plant Physiol Biochem 30: 579–584). The role of this compound in the induction of this and of other defence reactions is further studied in this paper. Treatment of tobacco cell suspensions with an elicitor from Phytophthora parasitica var. nicotianae induced a rapid and transient increase in jasmonic acid levels, which was abolished when cells were preincubated with eicosatetraynoic acid (ETYA), an inhibitor of LOX. Pretreatment with ETYA also inhibited the induction of proteinase inhibitors by fungal elicitor, but not by MJ. Linolenic acid, a precursor of jasmonate biosynthesis, induced this defence response, whereas linoleic acid had no effect. Expression of defence-related genes encoding proteinase inhibitor II, hydroxyproline-rich or glycine-rich glycoproteins, glucanase and chitinase, was induced in a basically similar manner by fungal elicitor or MJ. However, ETYA did not inhibit, or only partially inhibited, the elicitation of these defence genes. Expression of the sesquiterpene cyclase (5-epi-aristolochene synthase) gene was not induced by MJ, but only by fungal elicitor, and ETYA pretreatment had no effect on this induction. The obtained results indicate that synthesis of jasmonate via the LOX pathway seems to be only part of a complex regulatory mechanism for the onset of many, but not all, defence reactions. Received: 4 July 1996 / Accepted: 23 November 1996
Keywords:: Defence reaction  Elicitor  Jasmonate  Lipoxygenase  Nicotiana  Signal transduction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号