首页 | 本学科首页   官方微博 | 高级检索  
     


Bacopa monnieri Extract Offsets Rotenone-Induced Cytotoxicity in Dopaminergic Cells and Oxidative Impairments in Mice Brain
Authors:George K. Shinomol  Rajeswara Babu Mythri  M. M. Srinivas Bharath  Muralidhara
Affiliation:(1) Department of Biochemistry and Nutrition, Central Food Technological Research Institute (A Constituent Laboratory of CSIR), Mysore, 570020, India;(2) Department of Neurochemistry, National Institute of Mental Health and Neurosciences, #2900, Hosur Road, Bangalore, 560029, India
Abstract:Bacopa monnieri (BM), an ayurvedic medicinal herb is widely known for its memory enhancing ability and improvement of brain function. In this study, we tested the hypothesis that BM extract (BME) could offset neurotoxicant-induced oxidative dysfunctions in developing brain in a rotenone (ROT) mouse model. Pretreatment of dopaminergic (N27 cell lines) cells with BME exhibited significant cytoprotective effect as evidenced by the attenuation of ROT-induced oxidative stress and cell death. Further, the neuroprotective efficacy of BME was assessed in prepubertal mice administered ROT (i.p. 1.0 mg/kg b.w./day) for 7 days. BME treatment significantly offset ROT-induced oxidative damage in striatum (St) and other brain regions as evident by the normalized levels of oxidative markers (malondialdehyde, ROS levels, and hydroperoxides) and restoration of depleted GSH levels. Further, BME effectively normalized the protein carbonyl content in all brain regions suggesting its ability to prevent protein oxidation. Furthermore, BME treatment restored the activity levels of cytosolic antioxidant enzymes, neurotransmitter function, and dopamine levels in St. Based on our findings, we hypothesize that the neuroprotective effects of BM extract may be at least in part related to its ability to enhance reduced glutathione and antioxidant defenses in brain regions. It is suggested that BM may be effectively exploited as a prophylactic/therapeutic adjuvant for neurodegenerative disorders involving oxidative stress.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号