首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Organic Anion Exudation by Lowland Rice (Oryza sativa L.) at Zinc and Phosphorus Deficiency
Authors:Ellis Hoffland  Changzhou Wei  Matthias Wissuwa
Institution:(1) Dept. of Soil Quality, Wageningen University, P.O.Box 8005, NL 6700 Wageningen, EC , The Netherlands;(2) Key Lab. of Oasis Ecology Agriculture of Bingtuan, Shihezi University, Post box 425, 832000 Xinjiang, P.R. China;(3) Crop, Soil, and Water Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines;(4) Present address: Japan International Research Center for Agricultural Sciences, 1-1,Ohwashi, 305-8686 Tsukuba, Ibaraki, Japan
Abstract:The objectives of this paper were to determine (1) if lowland rice (Oryza sativa L.) plants respond similarly to low zinc (Zn) and phosphorus (P) availability by increased root exudation of low-molecular weight organic anions (LMWOAs) and (2) if genotypic variation in tolerance to low soil supply of either Zn or P is related to LMWOA exudation rates. Exudation of LMWOAs can increase bioavailability of both Zn and P to the plant, through partly similar chemical mechanisms. We used seven lowland rice genotypes and showed in two experiments that genotypes that grow relatively well on a soil with low Zn availability also grow well on a sparingly soluble Ca-phosphate (r = 0.80, P = 0.03). We measured exudation rates of LMWOAs on nutrient solution and found that both Zn and P deficiency induced significant increases. Among the LMWOAs detected oxalate was quantitatively the most important, but citrate is considered more effective in mobilizing Zn. Citrate exudation rates correlated with tolerance to low soil levels of Zn (P=0.05) and P (P = 0.07). In a low-Zn-field we found an increased biomass production at higher plant density, which is supportive for a concentration-dependent rhizosphere effect on Zn bioavailability such as LMWOA exudation. We, for the first time, showed that tolerance to low Zn availability is related to the capacity of a plant to exude LMWOAs and confirmed that exudation of LMWOAs must be regarded a multiple stress response.
Keywords:citrate  deficiency  oxalate  phosphorus  rice  root exudation  tolerance  zinc
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号