首页 | 本学科首页   官方微博 | 高级检索  
     


Ribosomal RNA Analysis Indicates a Benthic Pennate Diatom Ancestry for the Endosymbionts of the Dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta)
Authors:JOBY M. CHESNICK  WIEBE H. C. F. KOOISTRA  URSULA WELLBROCK  LINDA K. MEDLIN
Affiliation:Biology Department, Lafayette College, Easton, Pennsylvania 18042, USA;Alfred Wegener Institute for Polar and Marine Research, Box 120161. D-27515 Bremerhaven, Germany
Abstract:ABSTRACT. The establishment of chloroplasts as cellular organelles in the dinoflagellate, heterokont (stramenopile), haptophyte, and cryptophyte algae is widely accepted to have been the result of secondary endosymbiotic events, that is, the uptake of a photosynthetic eukaryote by a phagotrophic eukaryote. However, the circumstances that promote such associations between two phylogenetically distinct organisms and result in the integration of their genomes to form a single functional photosynthetic cell is unclear. The dinoflagellates Peridinium foliaceum and Peridinium balticum are unusual in that each contains a membrance-bound eukaryotic heterokont endosymbiont. These symbioses have been interpreted, through data derived from ultrastructural and biochemical investigations, to represent an intermediate stage of secondary endosymbiotic chloroplast acquistion. In this study we have examined the phylogenetic origin of the P. foliaceum and P. Balticum heterokont endosymbionts through analaysis of their nuclear small subunit ribosomal RNA genes. Our analyses clearly demonstrate both endosymbionts are pennate diatoms belonging to the family Bacillariaceae. Since members of the Bacillariaceae are usually benthic, living on shallow marine sediments, the manner in which establishment of a symbiosis between a planktonic flagellated dinoflagellate and a botton-dwelling diatom is discussed. In particular, specific environmentally associated life strategy stages of the host and symbiont, coupled with diatom food preferences by the dinoflagellate, may have been vital to the formation of this association.
Keywords:Bacillaria    Bacillariophyta    chromophyte    endosymbiosis    Nitzchia    small subunit rRNA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号