首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iron metabolism is modified by the copper status of a human erythroleukemic (K562) cell line.
Authors:S S Percival
Institution:Department of Food Science and Human Nutrition, University of Florida, Gainesville 32611.
Abstract:Copper deficiency is known to result in a microcytic, hypochromic anemia. Red cells of copper-deficient animals have less hemoglobin than their copper-adequate counterparts. The objective of this work was to determine what role copper plays in maintaining hemoglobin levels. It was hypothesized that the primary defect lies in intracellular iron metabolism. The influence of copper supplementation on iron uptake and storage was examined in a cell line capable of hemoglobin synthesis. The results demonstrated that copper supplementation of human K562 cells was associated with higher cytosolic iron levels and ferritin levels. Copper supplementation of the cell culture altered the initial rate of iron uptake from transferrin and enhanced iron uptake in noninduced cells; however, in hemin-induced K562 cells, which express fewer transferrin receptors on the cell surface, copper appeared to reduce iron uptake. Subsequent studies showed that the cells were able to take up the same amount of iron from transferrin when incubated over a longer period of time (24 hr). In the noninduced (non-hemoglobin synthesizing) cells, proportionally more iron was associated with the ferritin. We concluded from these studies that copper affects both uptake and storage of iron and that copper supplementation reduces cellular iron turnover.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号