首页 | 本学科首页   官方微博 | 高级检索  
     


Macroconsumers are more important than specialist macroinvertebrate shredders in leaf processing in urban forest streams of Rio de Janeiro,Brazil
Authors:Timothy P. Moulton  Sandra A. P. Magalhães-Fraga  Ernesto Fuentes Brito  Francisco A. Barbosa
Affiliation:1.Departamento de Ecologia, IBRAG,Universidade do Estado do Rio de Janeiro,Rio de Janeiro,Brazil;2.Núcleo de Gest?o em Biodiversidade e Saúde ,Instituto de Tecnologia em Fármacos, Funda??o Oswaldo Cruz,Rio de Janeiro,Brazil;3.Departamento de Biologia Geral, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais,Belo Horizonte,Brazil
Abstract:Coarse particulate organic matter is often broken down by specialist shredder invertebrates in temperate streams. In some tropical streams, larger, non-specialist, omnivorous fauna, (macroconsumers), particularly decapod shrimps and crabs, have been found to process coarse particulate matter. Larger shrimps and fish may also prey on or inhibit smaller invertebrates. Depending on the relative importance of larger and smaller fauna in leaf processing and in predatory interactions, we could expect that exclusion of larger fauna could either result in a decrease in leaf processing (if they were important in shredding or bioturbation) or increase in leaf processing if they negatively affected smaller shredders. We tested this by excluding fauna of different sizes from leaf peaks using bags with different sizes of mesh –0.2 mm (exclusion of most fauna), 2 mm (exclusion of larger fauna), and 10 mm (access to most fauna). Bag effect on leaf processing was minimized by constructing the bags of the same, fine, material, and sewing a relatively small window of the required mesh size. The experiment was conducted on two occasions in three streams of the urban forest of Parque Estadual da Pedra Branca, city of Rio de Janeiro. The three streams differed in larger fauna of shrimps (Macrobrachium potiuna), crabs, tadpoles, and fish. Packs were incubated for six time intervals and the rate of leaf processing calculated as the exponential rate of loss of leaf material. Rate of leaf processing was faster in bags with the largest mesh size; the rates in the other two mesh sizes were not statistically different. Rates varied between experiments and among streams. We could not attribute the faster leaf processing to any particular component of the larger fauna; the patterns of differences among streams and between experiments were not associated with particular taxa. There was no general trend of fewer smaller fauna in the presence of macroconsumers; the few smaller taxa that were different between mesh sizes were variously less and more abundant in the 10-mm mesh bags compared to the 2-mm. Known shredders were rare in the smaller fauna; the mining chironomid Stenochironomus was common, but was apparently not affected by larger fauna and apparently did not increase leaf processing. We conclude that macroconsumers and not smaller fauna had a positive effect on leaf processing, and this confirms a pattern observed in some other coastal Neotropical streams.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号