首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of algorithms for the identification of specimens using DNA barcodes: examples from gymnosperms
Authors:Damon P. Little   Dennis Wm. Stevenson
Affiliation:Lewis B. and Dorothy Cullman Program for Molecular Systematic Studies, The New York Botanical Garden, Bronx, New York 10458-5126, USA
Abstract:In order to use DNA sequences for specimen identification (e.g., barcoding, fingerprinting) an algorithm to compare query sequences with a reference database is needed. Precision and accuracy of query sequence identification was estimated for hierarchical clustering (parsimony and neighbor joining), similarity methods (BLAST, BLAT and megaBLAST), combined clustering/similarity methods (BLAST/parsimony and BLAST/neighbor joining), diagnostic methods (DNA–BAR and DOME ID), and a new method (ATIM). We offer two novel alignment‐free algorithmic solutions (DOME ID and ATIM) to identify query sequences for the purposes of DNA barcoding. Publicly available gymnosperm nrITS 2 and plastid matK sequences were used as test data sets. On the test data sets, almost all of the methods were able to accurately identify sequences to genus; however, no method was able to accurately identify query sequences to species at a frequency that would be considered useful for routine specimen identification (42–71% unambiguously correct). Clustering methods performed the worst (perhaps due to alignment issues). Similarity methods, ATIM, DNA–BAR, and DOME ID all performed at approximately the same level. Given the relative precision of the algorithms (median = 67% unambiguous), the low accuracy of species‐level identification observed could be ascribed to the lack of correspondence between patterns of allelic similarity and species delimitations. Application of DNA barcoding to sequences of CITES listed cycads (Cycadopsida) provides an example of the potential application of DNA barcoding to enforcement of conservation laws. © The Willi Hennig Society 2006.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号