首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acoustical and neural aspects of hearing in the Australian gleaning bats,Macroderma gigas andNyctophilus gouldi
Authors:Anna Guppy  Roger B Coles
Institution:Research School of Biological Sciences, Australian National University, Canberra.
Abstract:1. The maximum acoustic gain of the external ear in Macroderma gigas was found to be 25-30 dB between 5-8 kHz and in Nyctophilus gouldi it reached 15-23 dB between 7-22 kHz. Pinna gain reached a peak of 16 dB near 4.5-6 kHz in M. gigas and 12-17 dB between 7-12 kHz in N. gouldi, with average gain of 6-10 dB up to 100 kHz. Pinna gain curves resemble that of a finite conical horn, including resonance. 2. The directional properties of the external ear in both species result from sound diffraction at the pinna face, as it approximates a circular aperture. The frequency dependent movement of the acoustic axis in azimuth and elevation is attributed to the asymmetrical structure of the pinnae. 3. Evoked potentials and neuronal responses were studied in the inferior colliculus. In M. gigas, the neural audiogram has sensitivity peaks at 10-20 kHz and 35-43 kHz, with extremely low thresholds (-18 dB SPL) in the low frequency region. In N. gouldi, the neural audiogram has sensitivity peaks at 8-14 kHz (lowest threshold 5 dB SPL) and 22-45 kHz. Removal of the contralateral pinna causes a frequency dependent loss in neural threshold sensitivity of up to 10-15 dB in both species. 4. The high frequency peak in the audiogram coincides with the sonar energy band in both species, whereas the low frequency region is used for social communication. Highly sensitive low frequency hearing is discussed in relation to hunting in bats by passive listening.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号