Saccharopine dehydrogenase. Substrate inhibition studies. |
| |
Authors: | M Fujioka |
| |
Abstract: | In the direction of reductive condensation of alpha-ketoglutarate and lysine, saccharopine dehydrogenase (N6-(glutar-2-yl)-L-lysine:NAD oxidoreductase (lysine-forming) is inhibited by high concentrations of alpha-ketoglutarate and lysine, but not by NADH. NAD+ and saccharopine show no substrate inhibition in the reverse direction. Substrate inhibition by alpha-ketoglutarate and lysine is linear uncompetitive versus NADH. However, when the inhibition is examined with alpha-ketoglutarate or lysine as the variable substrate, the double reciprocal plots show a family of curved lines concave up. The curvature is more pronounced with increasing concentrations of the inhibitory substrate, suggesting an interaction of variable substrate with the enzyme form carrying the inhibitory substrate. These inhibition patterns, the lack of interaction of structural analogs of lysine such as ornithine and norleucine with the E-NAD+ complex (Fujioka M., and Nakatani, Y. (1972) Eur. J. Biochem. 25, 301-307), the identity of values of inhibition constants of alpha-ketoglutarate and lysine obtained with either one as the substrate inhibitor, and the substrate inhibition data in the presence of a reaction product, NAD+, are consistent with the mechanism that substrate inhibition results from the formation of a dead-end E-NAD+-alpha-ketoglutarate complex followed by the addition of lysine to this abortive complex. |
| |
Keywords: | |
|
|