首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Translocation and accumulation of nicotine via distinct spatio-temporal regulation of nicotine transporters in Nicotiana tabacum
Authors:Nobukazu Shitan  Minaho Hayashida  Kazufumi Yazaki
Institution:1Department of Natural Medicinal Chemistry; Kobe Pharmaceutical University; Motoyamakita-machi; Kobe, Japan;2Laboratory of Plant Gene Expression; Research Institute for Sustainable Humanosphere; Kyoto University; Uji, Japan
Abstract:In plants, secondary metabolites play important roles in adaptation to the environment. Nicotine, a pyridine alkaloid in Nicotiana tabacum, functions as chemical barrier against herbivores. Nicotine produced in the root undergoes long-distance transport and accumulates mainly in the leaves. Since production of such defensive compounds is costly, plants must regulate the allocation of the products to their tissues; however, the molecular mechanism of nicotine translocation remains unclear. Our recent studies identified a novel multidrug and toxic compound extrusion (MATE)-type nicotine transporter, JAT2 (jasmonate-inducible alkaloid transporter 2). This transporter is specifically expressed in leaves, localizes to the tonoplast, and transports nicotine as its substrate. The specific induction of JAT2 expression in leaves by methyl jasmonate (MeJA) treatment suggests that this transporter plays an important role in nicotine distribution to leaves, especially under herbivore attack, by transporting nicotine into the vacuole. Considering JAT2, together with the previously identified MATE transporters JAT1, MATE1, and MATE2, and the PUP (purine permease) transporter NUP1 (nicotine uptake permease1), we show a model of nicotine translocation and accumulation via distinct spatio-temporal regulation of nicotine transporter expression. Furthermore, we discuss the possible role of nicotine transporters in determining outcrossing rates and seed production.
Keywords:alkaloid  MATE  nicotine  tobacco  translocation  transporter
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号